a2 United States Patent

Bone

US009153029B2

US 9,153,029 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54) BLOCK PATTERNS AS TWO-DIMENSIONAL
RULER

(75) Donald James Bone, Wentworth Falls

(AU)

Inventor:

(73)

")

Assignee: Canon Kabushiki Kaisha, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 117 days.

@
(22)

Appl. No.: 13/994,068

PCT Filed: Dec. 13,2011

PCT No.:

§371 (D),
(2), (4) Date:

(86) PCT/AU2011/001608

Aug. 28, 2013

(87) PCT Pub. No.: W02012/079117

PCT Pub. Date: Jun. 21, 2012

(65) Prior Publication Data

US 2014/0003740 A1 Jan. 2, 2014

(30) Foreign Application Priority Data

Dec. 15,2010 (AU) 2010257224

(51) Int.CL
GO6T 7/00
GOIB 11/00
USS. CL
CPC

(2006.01)
(2006.01)
(52)
GO6T 7/0042 (2013.01); GOIB 11/002

(2013.01)

Field of Classification Search
None
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,813,035 B2 11/2004 Hoffmann
2003/0123707 Al* 7/2003 Parkcoevviviiinn 382/106
2008/0049268 Al 2/2008 Hardy
2010/0074532 Al* 3/2010 Gordonetal. 382/203
2010/0209002 Al 8/2010 Thiel et al.
OTHER PUBLICATIONS

Ozturk, C., J. Nissanov, and S. Dubin. “Generation of perfect map
codes for an active stereo imaging system.” Bioengineering Confer-
ence, 1996., Proceedings of the 1996 IEEE Twenty-Second Annual
Northeast. IEEE, 1996 .*

Morano et al.,“Structured Light Using Pseudorandom Codes”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 322-
327, Mar. 1998, vol. 20, No. 3.

(Continued)

Primary Examiner — Samir Ahmed

Assistant Examiner — Menatoallah Youssef

(74) Attorney, Agent, or Firm — Canon USA Inc. IP
Division

(57) ABSTRACT

A two-dimensional pattern comprises a plurality of R-planes
each comprising a tiling of a corresponding R-ary block,
being a block of radix R integer values, where for each dimen-
sion of the pattern, the least common multiple of the sizes of
the tiled blocks in that dimension is greater than the size of the
tiling that dimension, and any sub-block ofa size less than the
tiled blocks occurs on a regular grid with the same periodicity
as the tiled block for that R-plane. The pattern may be used in
determining a position of a location captured in an image by
projecting the pattern onto a scene. An image is captured. The
method determines from the captured image a sub-block
associated with the location and constructs, a unique integer
value for each R-plane. The unique integer values from each
R-plane are used to determine the location in the image.

15 Claims, 28 Drawing Sheets

100

US 9,153,029 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Adan et al.,“Disordered Patterns Projection for 3D Motion Recover-
ing” Proceedings of the 2nd International Symposium on 3D Data
Processing, Visualization, and Transmission, Date: Sep. 6-9, 2004.
Morita, H., et al., “Reconstrution of Surfaces of 3-D Objects by
Me-array Pattern Projection Method”, IEEE, 1988, pp. 468-473.

Ozturk, C., et al., “Generation of Perfect Map Codes for an Active
Stereo Imaging System”, pp. 76-77, Drexel University, Philadelphia,
PA, Date Mar. 1996.

Pages, I, et al., “Overview of coded light projection techniques for
automatic 3D profiling”, Proceedings of the 2003 IEEE International
Conference of Robotics and Automation, Sep. 14-19, 2003, pp. 133-
138.

* cited by examiner

U.S. Patent Oct. 6, 2015 Sheet 1 of 28 US 9,153,029 B2

U.S. Patent Oct. 6, 2015 Sheet 2 of 28 US 9,153,029 B2

203
< Start > /
Capture image of 3D
Generate 2D object illuminated by 204
ruler pattern 2D ruler pattern
) Process
Project 2D ruler captured image
201 pattern to get captured
onto 3D scene image coordinate
mapping

A

202 (Finish >

Fig. 2A

U.S. Patent Oct. 6, 2015 Sheet 3 of 28

US 9,153,029 B2

'N 210

Start
22& l‘
Generate n tileable

coprime sized
perfect submaps

230 i
p=o
Tile individual
submaps

ol
Create greyscale
image with tiled

submaps in
separate bit-planes

Fig. 2B

Project image onto
source

|

Capture projected
image

Save captured test
patterns

Process data to
recover 3D surface
geometry

'

Finish

=

260

270

Lt

280

v 2w,

US 9,153,029 B2

Sheet 4 of 28

Oct. 6, 2015

U.S. Patent

ysiui

y0€

G0¢€

abew susos pue
Buiddew

"PIO0D JOAODRI 0]

sobew| painydes
$8900id

'

8usos (g ouo
usened

Jo[ni payiys
aseyd g 109loid

A

uieed Jsjni payiys
aseyd Qg usuno

Aq pejeununyj joslqo

ag jo ebewr ainyden

aouenbes
Jo wshed 1xsu 0}
uiened 188

|

¢paimdeo

sabew je
SBA ON

90€
80¢€

00€

L0€

aouenbas
Jo wisned 1s1y 0}
uiened 188

usalied Jajni woy
aousnbas uieyed
payiys aseyd ajeai)

suleyed Jon
az eeisusn)

yelg

€0¢

AV

10¢

US 9,153,029 B2

Sheet 5 of 28

Oct. 6, 2015

U.S. Patent

ysiul4
oLy |
use)jed epoo
Jsjni Qz anes
80v
L0V £,919|0W0D

seue|dyq |y

o[} Sddl yim
wis)ied Jejnu QzZ

Jo sued)ig waLND 8|

ON

Gov sueldiq
18411 0} aue(dlg 189S
607 wieed Jejni Qg
szien|
Jaquinu
sueldig
uswialouyj
sueldiq
JusuNo Joj 8l
Sddl seisuen

y 614

Yoy

90y

sueidiqg
yoes Ioj sojl} Sddl
jo s8zIs
swudoo 188

MOPpUIM 8p092 (02
jo adeys
pue 8zis 9S8

saue|d}iq jo
Jjaquinu 188

vels

€0y

coy

Loy

US 9,153,029 B2

Sheet 6 of 28

Oct. 6, 2015

U.S. Patent

60G

ystut4

Sdel enes

L0G

wn = 9N

¢eanbiun
$8p0oo
MODUI M 1Y

0Lg

L0§

809

joxid euno o6bo)

asiou wopuel Aeuiq
yum ajl} asieniy|

oxid 1x8u 0} 0B

ON

SOA

&on<win

wn sddl payipow ul
$8p0D MopuIm anbiun
0 Jaquinu ajejnoes

909

uelg

on ‘sdal ul
S8P0OO MOPUIM snbiun
JO Jaquinu 91e|nojes

joxid Juauno ei660)

S

G0S

c0s

jexid e oy ob

-+

05

Ve

€0§

U.S. Patent Oct. 6, 2015 Sheet 7 of 28 US 9,153,029 B2

600

603
601 < Start) /

Form integer window
> code from bit

604
v sequence
602 Select initial /
pixel in TBPS v

Save current window
code and TBPS pixel

offsets in a 2D look up
4 table 605

/ 607
/

form bit sequence
from pixels within

606 defined window

around current pixel

No Al TBPS

pixels
encoded

A

go to next
pixel in TBPS

A

Use 2D look up table
to construct hash
table using window
code as a key

A 4

=

U.S. Patent Oct. 6, 2015 Sheet 8 of 28 US 9,153,029 B2

204

Select first local
region Start
of captured image

703 704
701 Process captured
image intensities to Recover affine Sample ruler codes at
get ruler code values sampling grid in affine grid of captured
at captured image local region image locations
pixel locations 705
I
Process code
702 Select next local No all local values to recover
region regions mapping of
of captured image processed captured image
coordinates

706
707

Fig. 7

U.S. Patent Oct. 6, 2015 Sheet 9 of 28 US 9,153,029 B2

308

801

\

Process captured
image intensities to Select first local
get ruler code values region Start
at captured image of captured images 804
pixel locations
802
Process captured Recover affine Sample ruler codes at
images to recover sampling grid in affine grid of captured
scene image local region image locations 705
Process code
803 Select next local all local 703 values to recover
region regions mapping of
of captured image processed captured image
coordinates
805

US 9,153,029 B2

Sheet 10 of 28

Oct. 6, 2015

U.S. Patent

ysiutd

v WIojsuel] auye |[n
wLio} 0}y wlojsuels)
SUILE YUM UC[BOO|

yead suiquio)

7'y

pub Buidwes wuoy 0
V Wwojsuel) suyje [

ybnouy) sfexid Sddl
indur jo senjueo depy

yead Aglesu
Buons 1895010 Aluaep)

OL6

dewnig
uoibal [es0] yim
ol indul pawlojsuen
JO UOIJB|SLIOD BjB[NO|eD

806

L06

IOd 01 18880[0
s)ead uoneuLoD
}sebuouys noy Ajjuspi

¥06

A

sjuiod psyiuspul
0} $8]BUIPI00D Sddl
Indul JO SIBUI0D WOy
v WLIOjSUBl) duiye puy

Y wiojsues)
aulyje payiuspl yjim
Sdgl indur wioisuesy

€04

G06

906

dewsiqg uoibau |eoo|
yum dewyg uoibaigns
JO UOIEISL0D BJeNojed

abew jo
uoibal [e00] jo auejdlig
Jo uoibaigns 10908

(10d) 1ses03U1 JO JUIOd
punose ebeuw jo uoibai
[e20] jo sueldlig 108[9S

yelg

€06

¢06

106

U.S. Patent

Oct. 6, 2015

Sheet 11 of 28

705

set initial grid point

N

1001

set bit plane to first
bitplane

next grid point

N

1009

1002

get window code
around current pixel in
current bitplane

1010

go to next bitplane

N

1003

use window code to
look up LBPS offset in
hash table for current
bitplane

1006 1008

LBPS offsets
calculated in
all bitplanes

“

1004

1005
1007

Fig. 10

US 9,153,029 B2

Yes

all grid points
decoded

save grid point
address in captured
image to address of
current code pattern in
mapping array

use CRT to convert
set of LBPS offsets to
code address in full
code pattern

US 9,153,029 B2

Sheet 12 of 28

Oct. 6, 2015

U.S. Patent

LoLL

L1 "B

oLl

US 9,153,029 B2

Sheet 13 of 28

Oct. 6, 2015

U.S. Patent

€0l

¥oL1

[AVI4%

Gicl

L0Cl

gecl

y0cl

Ggeel

401%%

Zl ‘b4

GocL

90¢!

U.S. Patent Oct. 6, 2015 Sheet 14 of 28 US 9,153,029 B2

~

1303

1302

1300

1301

Fig. 13

1206

US 9,153,029 B2

Sheet 15 of 28

Oct. 6, 2015

U.S. Patent

2ol

1%

yovi

=(01 4%

eori

covl

AIE

Lovi

US 9,153,029 B2

Sheet 16 of 28

Oct. 6, 2015

U.S. Patent

covl

LOS 1L GlL ‘Bi

190} 4%

S
.
-

c0sg1

U.S. Patent Oct. 6, 2015 Sheet 17 of 28 US 9,153,029 B2

1602 1600

/

1603

1601

1605

AL w (1(w).Jw) //

US 9,153,029 B2

1702

Sheet 18 of 28

1700

Oct. 6, 2015

U.S. Patent

1703

1705

[
|

R e et
|

N Y S NS

| | |
JUO ISRRNU SR FUUUI S
| { |
: :
SN0 SN VR VN Lopbge g e g jbe) i
%ﬂ«ﬂﬁ“xw&r ot B TRICE) SF S | SR Ll T S S S B 2 SRR 1 St
e i e e e e e ke b e e
m ¥ _ % « ¥ % m % »w - m.
‘,.mu.;...m.i”vc :mtswv vm;v scw?. m.aims::w.'m.:.»as*vw ;«sammmv:ai..
i ¥ ¥ i ¥ e] A _— b L
: : : : : A e o e o et e o o e e
R . I R, 4 BT -0 IO T O DR UN. NSOV LA % WCAE N AORLEE DU B
: : ; : ; IR A B A A A | M | B TYTY '
i H & B ¥ # # i & ¥ 3 & E
[€ [[¥ b koo B . z 5 o9 ol Lo s 1 somemmiionon
o dun ; ik : 4 .“ g* $ * 3 wv ¥ m H H iy 1
o e 8 Fremm G < I I I L DN T 1T T T e e Ry e T
+ ‘ i & B % ® @ 3 € + uq m-
| 1 1 ; H = = Lok Bt 20 e = =
T S - pommnn fownnn 4 B DU 5 R SO S5 WU | NS-UUG | O A S AU 55 RN R
+ 13 ¥ i % ¥ ¥ % % & % & 1]
1 ¥ § B ¥ m ¥ - k3 m & m $ ¥ m k m« §:
: : ‘ : ; e e i e it BEE P o
e e o e 2w . deom e funditanbatoboonbetoeqbedmak bt deo ok
' & M M : H u. m H ”] ” M u“ m"
+ & m
P S P S— o .
ISV SRR SN SUNS SO P IS e o Eatyh ot s oo o b s i3
R
lmiuf by, e %ﬂwozlr s e gxwif !.mkt
ok vl b ok o o e
i o S N B i : i
% IR N R

1701

Fig. 17

1704

U.S. Patent Oct. 6, 2015 Sheet 19 of 28 US 9,153,029 B2
7 N"T N
1899 7 -~
(Wide-Area) (
f } Communications
~ Network 1820 -
Printer 1815 |<— ™
N~ -\ o J / r\/\\\\
Projector - 1824 \
/
102 /1821 ~— -
A ‘ - A
1817 f—\/ (Local-f_’\re_a) {
! Communications
% y Network 1822 ./
Ext. 1823 N /
]}- Modem \/\/4 -~
1816 /
— ; 1800
]}— A T // /
‘L ; 101
V Appl. P
Audio-Video /O Interfaces Local Net. p;1)8.33rog [S)tor_a ge
Interface 1807 1808 Ifface 1811 —— evices
HDD 1810 | 1809
| | | § e
-4 -
¢.f 1818 ¢ P 1819 \,i
Processor I/O Interface Memory Optical Disk
1805 1813 1806 Drive 1812
il *
\
_J ~
Keyboard 1802]
Scanner 1826 Disk Storage
1803 Medium 1825
Camera 105

Fig. 18A

U.S. Patent Oct. 6, 2015 Sheet 20 of 28 US 9,153,029 B2

1834 1833
s /\
| Instruction (Part 1) 1828 | — | Data 1835
Instruction (Part 2) 1829 Data 1836
1831 <| (I) | | \. 1832
| Instruction 1830 | Data 1837
. P
ROM 1849
posT | [BIOS Bootstrap Operating
Input Variables 1854 OUtpUt Variables 1861
1855 1862
1856 1863
1857 1864
Intermediate Variables 1858
| 1859 I 1866 |
| 1860 I 1867 |

1819 ’\¢ 1804
/
T/1818

L]

1805
Interface 1842
1841 1848
Reg. 1844 (Instruction)
Control Unit 1839
Reg. 1845
I
ALU 1840 | Reg. 1846 (Data) |

Fig. 18B

U.S. Patent Oct. 6, 2015 Sheet 21 of 28 US 9,153,029 B2

Coprime-Sized 1908 1900

Tileable
Perfect Submaps .
v Full Ruler: 2730x2730 pixe

8 distinct intensities

Fig. 19

US 9,153,029 B2

Sheet 22 of 28

Oct. 6, 2015

U.S. Patent

0z 614

\ A

V/\ Buidde

\

oLl

0061

\

U.S. Patent Oct. 6, 2015 Sheet 23 of 28 US 9,153,029 B2

2100
Fig. 21A <—J 2102
Fig. 21B
Fig. 21C
2106 \/\
Fig. 21D
2202) J 2210 2200
2212_/}&> 1T 4 2204
2216 | 4~ 2206
\
\
X .
220(;\ Fig. 22

US 9,153,029 B2

Sheet 24 of 28

Oct. 6, 2015

U.S. Patent

00€¢

¢z 'b14

anjeA sp0d

w 9 o ©w o @9
O O @9~ ©O o @

<
-

anjeA Alisuaju| paddejy

US 9,153,029 B2

Sheet 25 of 28

Oct. 6, 2015

U.S. Patent

£ =

00¥Z

£

IS 3seud

08vc

{sprdy A

—
Ocve
oeve
(siexid) x ya \ {simad) x
0z 51 ot s/ /x 07 51 oL S
e o oz : _ o7
st 51
g i
=)
o & o5
S <
gruz="h yys aseyy ;MV ="t yiys aseyy N/
J:fi&a
{spad) x b ON?N
0z 5t at g 0Sv¢
v ; L5 o
" st !N\\% OLve
o
g
oL B

. g
il
, anjep xepul ‘ OW.VN

US 9,153,029 B2

Sheet 26 of 28

Oct. 6, 2015

S

U.S. Patent

oLgc

ystui4

ulened
2poo Jajni
az eaes

806¢

0S¢

¢ae|dwod
saue|d-y Iy

Gz "bi4

€04¢

A

8|} SdHl Yum
wisned Joini qz
jo aue|d-g JuaLNd 91 L

c0SZ sue|d-y 184y
0} aue|d-} 18s
v
wiened Jo|ni Qz
6062 8zl eniy)
Jaquunu
aue|d-y
JUsWBIOU|
A4
aue|d-y

A 4

Jualno oy 8|
SdY 1 sjeseusn

10Z

y05¢

905¢

|

aue|d-y

yoes 4o} sa| SdH L 205¢
JO sazis

awudoo 198

MOpUIM 8p00 02 1062
jo adeys
pue 8zis 183

soue|d-y jo
Jaquinu 18

Hels

US 9,153,029 B2

Sheet 27 of 28

Oct. 6, 2015

U.S. Patent

609¢

ysiutd

Sddl 9Aeg

109¢

9z "614

019¢

¢anbiun
S9p00
MOpUIM Iy

£09¢

S8A

éon<un
ON

809¢

19xid ua.ind
B33P APIPAY

W Sdy 1 peyipow u 909¢
Sapod mopuim anbiun
JO Jaquinu ajenoed

A 4

asiou wopues Aie-y

1@xid 1xau 0] ob

-

1axid waung

A 4

uswiaoul Aj9foAd 5092

UM i} asepiul

uvels

A 4

N 'Syl Ul
SOpPO3 MOPpUIM anbiun
JO Joquinu ajenojes

-+

1oxid jeniui 01 06

Y

¥09¢

\,

90G¢

f

2092

K

€09¢

U.S. Patent Oct. 6, 2015 Sheet 28 of 28 US 9,153,029 B2

2700
Coprime-Sized 2701
Tileable
2702 Perfect Submaps .
1 Full Ruler: 1716x1716 pixel

3-ary TRPS O

3-ary TRPS 1

L7
2704

3-ary TRPS 2

2706

27 distinct intensities
2710

Fig. 27

US 9,153,029 B2

1
BLOCK PATTERNS AS TWO-DIMENSIONAL
RULER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage of International Appli-
cation PCT/AU2011/001608 filed Dec. 13, 2011, which
claims the benefit of priority under the International (Paris)
Convention and 35 U.S.C. §119 of the filing date of Austra-
lian Patent Application No. 2010257224, filed Dec. 15, 2010,
the entire contents of the above applications being hereby
incorporated by reference in their entirety as if fully set forth
herein.

TECHNICAL FIELD

The present invention relates to the construction of two-
dimensional (2D) patterns for coding position in an image
and their application to alignment of projector/camera sys-
tems for the measurement of disparity by the projection of
structured light.

BACKGROUND

Many methods for capturing three-dimensional (3D) scene
depth information are known. Structured light methods rely
on establishing a mapping from the coordinate system of a
structuring pattern projected onto the scene to the coordinate
system of an image captured by a camera viewing the scene
illuminated by the structuring pattern. The projected structur-
ing pattern can be regarded as a ruler pattern useful for mea-
suring aspects of the scene. Once this mapping is determined,
knowledge of the relative geometry of the projector and cam-
era and calibration parameters of the camera and projector
can be used to determine the depth map of'the scene. There are
many known ways of establishing this coordinate mapping,
most being founded upon the trigonometric relationship of
the projector and camera. The depth map can be used for a
number of purposes, including 3D modelling of an object,
and the adjustment of light and other imaging parameters to
provide for better capturing of images.

One known way of establishing the coordinate mapping is
through the use of coded structured light. It is known to
generate patterns with a “2D window™ property such that a
defined 2D window around any discrete location in the pat-
tern contains a sub-pattern (a window code) that is unique to
that location. Projecting such a pattern onto the scene ensures
that a dense set of correspondences between the captured
image and the projected image can be obtained.

Much of the work to date has used binary codes such as de
Bruin arrays (also known as de Bruin Tori or Perfect Maps) or
M-arrays (also known as Semi-Perfect Maps). However,
though such binary codes are relatively easy to construct, they
have two disadvantages. Firstly, to code each location in a
discrete image having M locations, the binary map must use
a window containing at least mzlog, (M) points. For large M
this will require a large window which in applications such as
Coded Structured Light can mean that local errors affect a
larger portion of the map. Secondly, in these patterns all or
almost all possible window codes will occur exactly once,
which means that the pattern is not very robust to errors in the
measurement of point values which can result from noise or
variation in the surface reflectivity.

By using a K-ary rather than a binary code, the window
need only contain m=2 log, (M) points, thus reducing the
number of neighbourhood points required in the local win-

10

15

20

25

30

35

40

45

50

55

60

65

2

dow by a factor of log, (K). Occlusion in the 3D scene can
result in some parts of the projected ruler pattern not being
visible from the viewpoint of the camera. Because the local
window size is smaller in a K-ary code, occlusion will affect
a smaller number of points around an occlusion boundary
than are affected in a binary code.

Constructing patterns which only sparsely use the set of all
possible window codes means that a small local window can
code for many more locations than are required over the full
2D-ruler pattern. Codes can then be chosen to enforce a
minimum hamming distance in the code space between codes
used in the pattern. Errors in the recovered image that lead to
errors in the location code can then be detected and poten-
tially corrected.

Such patterns are described in “Structured Light Using
Pseudorandom Codes”, R. A. Morano et. al., IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 20,
No. 3, March 1998, hereafter “Morano”. Morano referred to
the patterns as “perfect submaps”™ since the patterns used a
subset of the possible codes available in the defined window,
and used each code only once. To create the patterns, Morano
used a brute force search. However Morano’s approach
becomes computationally expensive for even moderately
large arrays, limiting the resolution that can be achieved in
practice. With large arrays it is also necessary to address the
problem of efficiently decoding the location from the window
code.

In Coded Structured Light the captured image is subject to
geometric distortion because of the 3D shape of the surface on
which it is projected. This can complicate the process of
extracting the window code. Many existing methods rely on
having isolated elements (such as coloured spots) in their
patterns so that the centres of each element can be identified
to deal with geometric distortion. Requiring disjoint elements
in the pattern limits the spatial resolution that can be achieved.
A need exists for a technique that can be efficiently decoded
for non-disjoint regions of the pattern.

Variation in the surface reflectivity (due to surface colour
or fine scale texture of the reflecting surface) can result in
spatial variations in the captured intensity which can greatly
complicate the problem of accurately recovering the code. A
need exists for an approach to coding the patterns that ensures
robust recovery of the coded information.

SUMMARY

Disclosed is a two-dimensional pattern and a method of
forming such a pattern, that can be imaged to provide for
depth and 2D ruler measurements. The pattern has nil, or low
and readily resolvable, ambiguity thereby permitting accu-
rate measurement with minimal processing load.

The pattern is founded upon tiling of distinct perfect sub-
maps in each of a number of R-planes such as bit-planes, with
the submaps of each bit-plane being differently sized. The
periodicity of tiling in the bit-planes and different sizes of the
sub-maps results in the pattern having a single period. The
pattern once formed may be stored or otherwise recorded for
subsequent projection to a target, such as a shape or surface,
and imaging by a camera to thereby permit features of the
shape or surface to be assessed. Various applications of the
pattern are also described.

In accordance with one aspect of the present disclosure,
there is provided a two-dimensional pattern comprising a
plurality of R-planes. Each R-plane comprises a tiling of a
corresponding R-ary block, being a block of radix R integer
values, such that for each dimension of the pattern, the least
common multiple of each of the sizes of the corresponding

US 9,153,029 B2

3

tiled R-ary blocks in that dimension is greater than the size of
the pattern in the same dimension, and such that any R-ary
sub-block of a predetermined size less than the tiled R-ary
blocks occurs only on a regular grid with the same periodicity
as the tiled R-ary block for that R-plane.

Typically the radix of the R-planes is 2, by which the
pattern is formed by bit-planes and binary blocks.

The pattern may be used in method of determining a two-
dimensional position of a location captured in an image by
projecting the two-dimensional pattern onto a three-dimen-
sional scene. An image of the scene including the projected
two-dimensional pattern is captured. The method determines
from the captured image a sub-block associated with the
location and constructs, from a R-ary representation of the
sub-block, a unique integer value for each R-plane, being a
representation of the pattern in the R-plane of the sub-block
associated with the location. The method uses the unique
integer values from each R-plane to determine the location in
the image.

Numerous other aspects are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

At least one embodiment of the present invention will now
be described with reference to the following drawings, in
which:

FIG. 1 shows the physical arrangement of a projector and
camera system for determining the mapping between a ruler
pattern coordinate space and a captured image coordinate
space using a single projected code pattern (the coordinate
mapping);

FIG. 2A is a schematic flow diagram illustrating a first
procedure for determining the coordinate mapping;

FIG. 2B is a schematic flow diagram of a second, more
detailed procedure for determining a coordinate mapping;

FIG. 3 is a schematic flow diagram illustrating a procedure
for determining the mapping between the ruler pattern coor-
dinate space and the captured image coordinate space using a
sequence of phase shifted images generated from a code
pattern image;

FIG. 4 is a schematic flow diagram illustrating a procedure
for creating a 2D ruler code pattern;

FIG. 5 is a schematic flow diagram illustrating a procedure
for creating a Toroidal Binary Perfect Submap (TBPS);

FIG. 6 is a schematic flow diagram illustrating a procedure
for creating a hash table for decoding the location in a TBPS
from the local window code;

FIG. 7 is a schematic flow diagram illustrating a procedure
for processing the captured image of a scene on which a 2D
Ruler Pattern has been projected, to recover the coordinate
mapping;

FIG. 8 is a schematic flow diagram illustrating a procedure
for processing the sequence of captured images of a scene on
which a phase shifted 2D Ruler Pattern sequence has been
projected, to recover the coordinate mapping and an image of
the scene;

FIG. 9 is a schematic flow diagram illustrating a procedure
for determining the affine distorted sampling points corre-
sponding to a mapped portion of the 2D ruler sample grid in
a selected local region of captured image;

FIG. 10 is a schematic flow diagram illustrating a proce-
dure to process the recovered ruler code values from a local
region to create the mapping data for that region;

FIG. 11 illustrates the selection of a local region of a
bit-plane of the ruler code values from a captured image;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 12 illustrates the use of correlation to identify the
affine scaling and shear parameters in a local region (that is,
the affine transformation disregarding translation);

FIG. 13 illustrates the affine transformation of a TBPS
from one bit-plane of the 2D ruler pattern to match the
observed affine distortion (disregarding translation) observed
in the captured image;

FIG. 14 illustrates the use of cross correlation to determine
the translation component of the affine transform of a TBPS
from one bit-plane of the 2D ruler code values in the captured
image;

FIG. 15 illustrates the mapping of the sample grid centres
of'the 2D ruler to the captured image coordinate space using
the estimated affine transform to establish the sample 2D ruler
sample grid in the captured image;

FIG. 16 illustrates the extraction of a window code from the
defined window around a selected point in a TBPS;

FIG. 17 illustrates the combination of the tiled TBPS
images as bit-planes of the 2D ruler pattern showing the
alignment of the TBPS tile boundaries in the several bit-
planes;

FIGS. 18A and 18B collectively form a schematic block
diagram representation of an electronic device upon which
described arrangements can be practised;

FIG. 19 illustrates an exemplary 2D ruler pattern according
to the present disclosure based on Toroidal Binary Perfect
Submaps;

FIG. 20 is a schematic representation of an image captured
in the system of FIG. 1;

FIGS. 21A-21D show some examples of code windows
that may be used in alternate implementations;

FIG. 22 illustrates the concept of offsets within a tile;

FIG. 23 illustrates the concept of phase shifting;

FIG. 24 illustrates the application of phase shifting to the
pattern across a series of projected patterns for improving
robustness of measurements to lighting variation, surface
reflectance and other sources of spurious intensity variation in
the captured image;

FIG. 25 is a schematic flow diagram illustrating a proce-
dure for creating a 2D ruler code pattern based on Toroidal
R-ary Perfect Submaps (TRPS);

FIG. 26 illustrates an exemplary 2D ruler pattern according
to the present disclosure based on TRPSs; and

FIG. 27 is a schematic flow diagram illustrating a proce-
dure for creating a TRPS.

DETAILED DESCRIPTION INCLUDING BEST
MODE

Disclosed are arrangements that provide a method for cre-
ating coding patterns which may be used as a 2D ruler and that
can be created efficiently and support methods that permit
robust recovery of the coding pattern, even in the presence of
spatially variable geometric distortion and spatially variable
intensity deviations in the captured coded image.

The coding patterns are based on the “2D window prop-
erty” and are usually created so that no part of the pattern with
the same shape and size of the defined window is repeated
anywhere in the image. This condition is highly desired to
ensure that the window property will provide a unique loca-
tion. The pattern used in the described implementations is
constructed from several bit-planes where each bit-plane is a
periodic tiling of a Toroidal Binary Perfect Submap (TBPS),
where the period of the tilings can be much smaller than the
final image of the coding pattern. The term ‘toroidal’ refers to
the fact that the perfect submap maintains the window prop-
erty across its periodic boundary as if the pattern existed on

US 9,153,029 B2

5

the surface of a torus. This periodic property allows the pat-
tern to be tiled such that the 2D-window property becomes a
“periodic 2D window property” so that each window code in
each bit-plane appears on a regular grid of centres rather than
as an isolated occurrence. Selecting or otherwise establishing
the TBPS in each bit-plane such that the least common mul-
tiple (LCM) of the submap sizes (horizontally and vertically)
is larger than the size (horizontally and vertically) of the
required 2D ruler ensures that the combination of window
codes associated with a given location will be unique within
the 2D ruler. If the sizes of the tiles are co-prime (i.e. having
dimensions expressible with a pair of integers that have no
common divisor other than unity, e.g. 8 and 9), then the period
of' the resulting ruler will be the product of the tile sizes. This
provides a large K-ary toroidal perfect sub-map which main-
tains the “2D -window property” over a large image area yet
is easily decoded.

Because the period of the individual bit-plane TBPS can be
quite small (of the order of a few pixels if necessary), a pattern
generated in this way provides a simple mechanism for
locally identifying the grid on which the code is defined in the
captured image and also allows a method for efficiently
decoding the location. Within a small region around a point of
interest, the geometric distortion of the captured image will
often be well represented by an affine distortion. Since the
input pattern in any bit-plane is known to be periodic on a
rectangular grid, by identifying the origin of four or more
neighbouring tiles in this grid, it is possible to accurately
determine the centre points of the pixels in the pattern. This
permits efficient recovery of the code around a given point,
even in the presence of significant (affine) distortion and
without the necessity to separately isolate the pixel bound-
aries in the projected pattern.

Once the pixel centres are identified, and the code recov-
ered, the location must be determined from the code. Since
the TBPS tiles in each bit-plane have a periodic binary 2D
window property, the window code in each bit-plane uniquely
identifies the offset of the point of interest within the TBPS
tile of each bit-plane. The offset of the point of interest for the
TBPS tile in each bit-plane can be determined from a set of
pre-calculated hash tables which map the window code in a
given bit-plane for the point of interest to the offset within the
TBPS for that bit-plane. Assuming the origin of the TBPS
tiles align at the origin of the coordinate system, these offsets
are just the remainders with respect to division of the location
coordinates by the periods in the respective bit-planes. Using
the well known Chinese Remainder Theorem, the location is
efficiently calculated from these remainders.

Provided the bit-planes can be accurately recovered, the
method requires only a single image to be projected and
captured. This allows the technique to recover high resolution
depth information from dynamic scenes. Ideally, although the
image may be geometrically distorted, scaling and offset
variation arising from this distortion is approximately con-
stant over one TBPS tile. However it is often the case that the
surface on which the pattern is projected has variations in
texture and colour which, in conjunction with spatial varia-
tions in the ambient lighting, can cause the captured image
intensity to vary significantly from the ideal case. This can
make accurate recovery of a K-ary code problematic as the
ideal captured image intensity is affected by a spatially vari-
able gain and offset that may vary significantly over one
TBPS tile. In this situation a method is provided that creates
from the coding image, using a sequential phase shifting
method, a short sequence of at least three images which
ensure that the code can be accurately recovered even in the
presence of these spatially variable perturbations.

20

40

45

55

6

An exemplary physical arrangement 100 used to determine
the coordinate mapping from the projector coordinates to the
captured image coordinates using one or more two-dimen-
sional (2D) ruler patterns is illustrated in FIG. 1. A computer
101 is used to create a ruler pattern which is sent to a projector
102 via a communications link 103. The projector 102
projects coded structured light in the form of a 2D ruler
pattern onto a scene containing the one or more 3D objects
104 of interest. A camera 105 captures the scene including the
3D objects 104 with the projected 2D ruler from a known
location and orientation relative to the projector 102. The
camera 105 sends the captured image to the computer 101 via
a communications link 106 for processing.

FIG. 19 shows an exemplary 2D ruler pattern 1900 that can
be used in the arrangement of FIG. 1, and which may be
projected by the projector 102 onto the object 104. The pat-
tern 1900 is described in more detail later.

FIG. 20 illustrates a schematic representation of a two-
dimensional image 2000 captured by the camera 105 of the
three-dimensional scene including the object 104 of FIG. 1.
In FIG. 20, a grossly simplified representation 2002 of the 2D
pattern (e.g. 1900) projected onto the scene by the projector
102 is also seen as part of the captured image 2000. Notably,
the 3D shape 104 causes distortion of the pattern 2002 as
recorded in the captured image 2000 by the camera 105. The
arrangements to be described may be used to determine a
two-dimensional position (x,y) in the captured image 2000 of
athree-dimensional location 110 in the scene. This is done by
determining a mapping between unique points known in the
pattern 1900 and corresponding unique points found in the
captured image 2000. This enables, amongst other processes,
the mapping of the surface distortion arising from the shape
104 through determination of multiple ones of the positions
(x,¥). In this example, as seen in FIGS. 1 and 20, the 3D
location 110 in the scene is a location on the surface of the
conical object 104 approximately one-third the height of the
cone down from the apex. The 2D position is simply a coor-
dinate position in the image 2000, which maps to correspond-
ing position (x',y") in the pattern 1900.

The arrangement of FIG. 1 is useful for measurements in a
3D environment, but the approaches disclosed herein may
also be used in 2D environments, thereby permitting 2D ruler
measurements. For example, the 2D pattern need not be pro-
jected onto the scene, but may be imparted onto or otherwise
incorporated into the scene. Further, the scene need not be
three-dimensional, but can be two-dimensional. For example,
the scene may be a flat surface, such as a wall or a print
medium, and the 2D pattern imparted onto the scene by
means such as printing the pattern. Where the scene is formed
on a print medium, the pattern may be printed directly onto
the scene in the medium. Alternatively, for the wall example,
the pattern may be printed onto a transparent medium, which
may then be positioned on the wall for imaging by the camera
105.

FIGS. 18A and 18B depict a general-purpose computer
system 1800, upon which the various arrangements described
can be practiced.

As seen in FIG. 18A, the computer system 1800 includes:
the computer module 101 of FIG. 1; input devices such as a
keyboard 1802, a mouse pointer device 1803, a scanner 1826,
and the camera 105; and output devices including a printer
1815, a display device 1814, the projector 102 and loudspeak-
ers 1817. An external Modulator-Demodulator (Modem)
transceiver device 1816 may be used by the computer module
101 for communicating to and from a communications net-
work 1820 via a connection 1821. The communications net-
work 1820 may be a wide-area network (WAN), such as the

US 9,153,029 B2

7

Internet, a cellular telecommunications network, or a private
WAN. Where the connection 1821 is a telephone line, the
modem 1816 may be a traditional “dial-up” modem. Alterna-
tively, where the connection 1821 is a high capacity (e.g.,
cable) connection, the modem 1816 may be a broadband
modem. A wireless modem may also be used for wireless
connection to the communications network 1820.

The computer module 101 typically includes at least one
processor unit 1805, and a memory unit 1806. For example,
the memory unit 1806 may have semiconductor random
access memory (RAM) and semiconductor read only
memory (ROM). The computer module 101 also includes an
number of input/output (I/0) interfaces including: an audio-
video interface 1807 that couples to the video display 1814,
loudspeakers 1817 and projector 102; an /0 interface 1813
that couples to the keyboard 1802, mouse 1803, scanner
1826, camera 105 and optionally a joystick or other human
interface device (not illustrated); and an interface 1808 for the
external modem 1816 and printer 1815. In some implemen-
tations, the modem 1816 may be incorporated within the
computer module 101, for example within the interface 1808.
The computer module 101 also has a local network interface
1811, which permits coupling of the computer system 1800
via a connection 1823 to a local-area communications net-
work 1822, known as a Local Area Network (LAN). As illus-
trated in FIG. 18A, the local communications network 1822
may also couple to the wide network 1820 via a connection
1824, which would typically include a so-called “firewall”
device or device of similar functionality. The local network
interface 1811 may comprise an Ethernet™ circuit card, a
Bluetooth™ wireless arrangement or an IEEE 802.11 wire-
less arrangement; however, numerous other types of inter-
faces may be practiced for the interface 1811.

The I/O interfaces 1808 and 1813 may afford either or both
of serial and parallel connectivity, the former typically being
implemented according to the Universal Serial Bus (USB)
standards and having corresponding USB connectors (not
illustrated). Storage devices 1809 are provided and typically
include a hard disk drive (HDD) 1810. Other storage devices
such as a floppy disk drive and a magnetic tape drive (not
illustrated) may also be used. An optical disk drive 1812 is
typically provided to act as a non-volatile source of data.
Portable memory devices, such optical disks (e.g., CD-ROM,
DVD, Blu-ray Disc™), USB-RAM, portable, external hard
drives, and floppy disks, for example, may be used as appro-
priate sources of data to the system 1800.

The components 1805 to 1813 of the computer module 101
typically communicate via an interconnected bus 1804 and in
a manner that results in a conventional mode of operation of
the computer system 1800 known to those in the relevant art.
For example, the processor 1805 is coupled to the system bus
1804 using a connection 1818. Likewise, the memory 1806
and optical disk drive 1812 are coupled to the system bus
1804 by connections 1819. Examples of computers on which
the described arrangements can be practised include IBM-
PC’s and compatibles, Sun Sparcstations, Apple Mac™ or a
like computer systems.

The method of coordinate mapping determination may be
computer-implemented using the computer system 1800
wherein the processes of FIGS. 2 to 17, to be described, may
be implemented as one or more software application pro-
grams 1833 executable within the computer system 1800. In
particular, the steps of the method of coordinate mapping
determination are effected by instructions 1831 (see FIG.
18B) in the software 1833 that are carried out within the
computer system 1800. The software instructions 1831 may
be formed as one or more code modules, each for performing

10

15

20

25

30

35

40

45

50

55

60

65

8

one or more particular tasks. The software may also be
divided into two separate parts, in which a first part and the
corresponding code modules performs the mapping determi-
nation methods and a second part and the corresponding code
modules manage a user interface between the first part and the
user.

The software may be stored in a computer readable
medium, including the storage devices described below, for
example. The software is loaded into the computer system
1800 from the computer readable medium, and then executed
by the computer system 1800. A computer readable medium
having such software or computer program recorded on the
computer readable medium is a computer program product.
The use of the computer program product in the computer
system 1800 preferably effects an advantageous apparatus for
coordinate mapping.

The software 1833 is typically stored in the HDD 1810 or
the memory 1806. The software is loaded into the computer
system 1800 from a computer readable medium, and
executed by the computer system 1800. Thus, for example,
the software 1833 may be stored on an optically readable disk
storage medium (e.g., CD-ROM) 1825 that is read by the
optical disk drive 1812. A computer readable medium having
such software or computer program recorded on it is a com-
puter program product. The use of the computer program
product in the computer system 1800 preferably effects an
apparatus for coordinate mapping.

In some instances, the application programs 1833 may be
supplied to the user encoded on one or more CD-ROMs 1825
and read via the corresponding drive 1812, or alternatively
may be read by the user from the networks 1820 or 1822. Still
further, the software can also be loaded into the computer
system 1800 from other computer readable media. Computer
readable storage media refers to any non-transitory tangible
storage medium that provides recorded instructions and/or
data to the computer system 1800 for execution and/or pro-
cessing. Examples of such storage media include floppy
disks, magnetic tape, CD-ROM, DVD, Blu-ray Disc, a hard
disk drive, a ROM or integrated circuit, USB memory, a
magneto-optical disk, or a computer readable card such as a
PCMCIA card and the like, whether or not such devices are
internal or external of the computer module 101. Examples of
transitory or non-tangible computer readable transmission
media that may also participate in the provision of software,
application programs, instructions and/or data to the com-
puter module 101 include radio or infra-red transmission
channels as well as a network connection to another computer
or networked device, and the Internet or Intranets including
e-mail transmissions and information recorded on Websites
and the like.

The second part of the application programs 1833 and the
corresponding code modules mentioned above may be
executed to implement one or more graphical user interfaces
(GUIs) to be rendered or otherwise represented upon the
display 1814. Through manipulation of typically the key-
board 1802 and the mouse 1803, a user of the computer
system 1800 and the application may manipulate the interface
in a functionally adaptable manner to provide controlling
commands and/or input to the applications associated with
the GUI(s). Other forms of functionally adaptable user inter-
faces may also be implemented, such as an audio interface
utilizing speech prompts output via the loudspeakers 1817.

FIG. 18B is a detailed schematic block diagram of the
processor 1805 and a “memory” 1834. The memory 1834
represents a logical aggregation of all the memory modules

US 9,153,029 B2

9

(including the HDD 1809 and semiconductor memory 1806)
that can be accessed by the computer module 101 in FIG.
18A.

When the computer module 101 is initially powered up, a
power-on self-test (POST) program 1850 executes. The
POST program 1850 is typically stored ina ROM 1849 of the
semiconductor memory 1806 of FIG. 18A. A hardware
device such as the ROM 1849 storing software is sometimes
referred to as firmware. The POST program 1850 examines
hardware within the computer module 101 to ensure proper
functioning and typically checks the processor 1805, the
memory 1834 (1809, 1806), and a basic input-output systems
software (BIOS) module 1851, also typically stored in the
ROM 1849, for correct operation. Once the POST program
1850 has run successfully, the BIOS 1851 activates the hard
disk drive 1810 of FIG. 18A. Activation of the hard disk drive
1810 causes a bootstrap loader program 1852 that is resident
on the hard disk drive 1810 to execute via the processor 1805.
This loads an operating system 1853 into the RAM memory
1806, upon which the operating system 1853 commences
operation. The operating system 1853 is a system level appli-
cation, executable by the processor 1805, to fulfil various
high level functions, including processor management,
memory management, device management, storage manage-
ment, software application interface, and generic user inter-
face.

The operating system 1853 manages the memory 1834
(1809, 1806) to ensure that each process or application run-
ning on the computer module 101 has sufficient memory in
which to execute without colliding with memory allocated to
another process. Furthermore, the different types of memory
available in the system 1800 of FIG. 18 A must be used prop-
erly so that each process can run effectively. Accordingly, the
aggregated memory 1834 is not intended to illustrate how
particular segments of memory are allocated (unless other-
wise stated), but rather to provide a general view of the
memory accessible by the computer system 1800 and how
such is used.

As shown in FIG. 18B, the processor 1805 includes a
number of functional modules including a control unit 1839,
an arithmetic logic unit (ALU) 1840, and a local or internal
memory 1848, sometimes called a cache memory. The cache
memory 1848 typically includes a number of storage registers
1844-1846 in a register section. One or more internal busses
1841 functionally interconnect these functional modules. The
processor 1805 typically also has one or more interfaces 1842
for communicating with external devices via the system bus
1804, using a connection 1818. The memory 1834 is coupled
to the bus 1804 using a connection 1819.

The application program 1833 includes a sequence of
instructions 1831 that may include conditional branch and
loop instructions. The program 1833 may also include data
1832 which is used in execution of the program 1833. The
instructions 1831 and the data 1832 are stored in memory
locations 1828, 1829, 1830 and 1835, 1836, 1837, respec-
tively. Depending upon the relative size of the instructions
1831 and the memory locations 1828-1830, a particular
instruction may be stored in a single memory location as
depicted by the instruction shown in the memory location
1830. Alternately, an instruction may be segmented into a
number of parts each of which is stored in a separate memory
location, as depicted by the instruction segments shown in the
memory locations 1828 and 1829.

In general, the processor 1805 is given a set of instructions
which are executed therein. The processor 1105 waits for a
subsequent input, to which the processor 1805 reacts to by
executing another set of instructions. Each input may be

20

30

40

45

10

provided from one or more of a number of sources, including
data generated by one or more of the input devices 1802,
1803, data received from an external source across one of the
networks 1820, 1802, data retrieved from one of the storage
devices 1806, 1809 or data retrieved from a storage medium
1825 inserted into the corresponding reader 1812, all depicted
in FIG. 18A. The execution of a set of the instructions may in
some cases result in output of data. Execution may also
involve storing data or variables to the memory 1834.

The disclosed coordinate mapping arrangements use input
variables 1854, which are stored in the memory 1834 in
corresponding memory locations 1855, 1856, 1857. The
coordinate mapping arrangements produce output variables
1861, which are stored in the memory 1834 in corresponding
memory locations 1862, 1863, 1864. Intermediate variables
1858 may be stored in memory locations 1859, 1860, 1866
and 1867.

Referring to the processor 1805 of FIG. 18B, the registers
1844, 1845, 1846, the arithmetic logic unit (ALU) 1840, and
the control unit 1839 work together to perform sequences of
micro-operations needed to perform “fetch, decode, and
execute” cycles for every instruction in the instruction set
making up the program 1833. Each fetch, decode, and
execute cycle comprises:

(a) a fetch operation, which fetches or reads an instruction
1831 from a memory location 1828, 1829, 1830;

(b) a decode operation in which the control unit 1839
determines which instruction has been fetched; and

(c) an execute operation in which the control unit 1839
and/or the ALU 1840 execute the instruction.

Thereafter, a further fetch, decode, and execute cycle for
the next instruction may be executed. Similarly, a store cycle
may be performed by which the control unit 1839 stores or
writes a value to a memory location 1832.

Each step or sub-process in the processes of FIGS. 2 to 17
is associated with one or more segments of the program 1833
and is performed by the register section 1844, 1845, 1847, the
ALU 1840, and the control unit 1839 in the processor 1805
working together to perform the fetch, decode, and execute
cycles for every instruction in the instruction set for the noted
segments of the program 1833.

An overall process 200 used to determine the coordinate
mapping using a single 2D ruler pattern is illustrated in FIG.
2A. First the 2D ruler pattern (e.g. 1900) is generated 201
within the computer module 101, then that ruler pattern is
projected 202 onto the 3D scene 104 using the projector 102.
An image of the scene with the projected ruler pattern is
captured 203 using the camera 105 and sent to the computer
101 via the communications link 106. The captured image is
then processed 204 on the computer 101 to return the coor-
dinate mapping, being a 2D position in an image of a location
in the 3D scene as captured by the camera 105.

FIG. 2B shows further detail of a process 210 where the
computer 101 initially in step 220 generates n tileable co-
prime sized perfect submaps. In step 230 the individual sub-
maps are tiled in corresponding bit-planes and step 240 cre-
ates a greyscale image with the tiled submaps over the various
bit-planes. The greyscale image is then projected in step 250
onto a surface and in step 260 an image of the projection is
captured, which is saved or stored in the computer 101 in step
270 as a captured test pattern. Lastly, in step 280 the data of
the saved test pattern is processed to recover the 3D geometry
of the surface.

The process 200 of FIG. 2A and the process 210 of FIG. 2B
are applicable to both static and dynamic scenes since only
one pattern is required to capture the coordinate mapping.
However, if the scene has spatially variable reflectivity with

US 9,153,029 B2

11

features of the order of the resolution of the pattern, this can
greatly complicate the processing required to capture the
depth information. For scenes where the object does not move
significantly in the time required to acquire a small number (at
least three) images, it is possible to use the 2D ruler pattern to
construct a set of phase shifted ruler patterns that allow both
the depth and a traditional scene image to be captured. The set
preferably includes at least three ruler patterns. A process 300
used to determine the coordinate mapping and a traditional
image of the scene, using a short series of phase shifted 2D
ruler patterns, is illustrated in FIG. 3.

The 2D Ruler pattern is generated in step 201. The 2D ruler
pattern is then used to create a series of 2D phase shifted ruler
patterns in step 302. A first pattern of the series is selected in
step 303 and projected at step 304 onto the scene 104 using
the projector 102. An image of the scene with the projected
ruler pattern is captured at step 305 using the camera 105 and
sent to the computer 101 via the communications link 106. If
there are more phase shifted ruler patterns to use, as deter-
mined at step 306, then the next pattern is selected at step 307
and projected 304 to produce a further captured image at step
305. When all ruler patterns in the sequence have been pro-
jected and the resulting images captured, the sequence of
captured images is processed at step 308 on the computer 101
to return the coordinate mapping and scene image.

Prior to discussing the process 201 for generation of the
ruler pattern, the basic features of the exemplary pattern 1900
of FIG. 19 are best described. The pattern 1900 is formed by
a confluence of bit-plane patterns, each bit-plane pattern
being formed by a 2D tiling of a corresponding perfect sub-
map pattern 1908. In the example of FIG. 19 there are three
bit-planes each formed from a corresponding differently
sized perfect submap pattern 1902, 1904 and 1906. The sub-
maps 1902, 1904 and 1906 in this example are co-prime,
where the submap 1902 has a size of 13x13 pixels, the sub-
map 1904 has a size of 14x14 pixels and the submap 1906 has
a size of 15x15 pixels. An LCM tiling of the co-prime sub-
maps give an overall dimension of the pattern 1900 of (13x
14x15)x(13x14x15)=2730x2730 pixels. The three bit-
planes 1902-1906 combine to give eight greyscale image
intensities available for pixels in the pattern 1900, as depicted
in the exemplary portion 1910 in FIG. 19. The effect of using
the perfect submaps in this fashion is that, for a small group of
pixels (in this case a 3x3 pixel block), there are no repetitions
in the pattern and thus each pixel location in the pattern may
be uniquely resolved.

Considering the pattern 1900 more generally, each bit-
plane is formed of a non-overlapping periodic repetition of a
binary block (i.e. a tiling of the binary block), such that for
each of the dimensions of the tiled binary blocks, the least
common multiple of each of the sizes of the tiled binary
blocks in that dimension is greater than the size of the pattern
in the same dimension and such that any binary sub-block of
a predetermined size less than the tiled binary blocks occurs
only on a regular grid with the same periodicity as the tiled
binary block for that bit-plane. This permits the tilings to be
performed using sizes that are not co-prime, provided the
overall pattern is sized to preclude ambiguity. Once formed,
the pattern may itself be tiled, and ambiguities arising from
such implementations would generally be readily resolvable
due to the significant displacement of unique locations in
each tile.

Detail of an example of the process 201 for creating the 2D
ruler pattern, used in the processes 200 and 300 is illustrated
in FIG. 4. First, a number of bit-planes to be used for encoding
is set at step 401. Next the size and shape of a 2D code window
is set in step 402. A 2D code window is used to identity a

25

40

45

12

unique collection of adjacent pixels in the pattern, and thus
the captured image, to thereby permit identification of a par-
ticular pixel location in the image and ruler pattern, from
which a geometric depth may then be determined. The code
window needs to be large enough to code more than the
number of points in the 2D ruler pattern. If there are M points
in the 2D ruler pattern and each point takes one of K=2V
possible values, where N is the number of bit-planes, then the
number of pixels in the 2D code window must be strictly
greater than log(M)=log,(M)/N. In the specific implemen-
tations described herein, a code window size of 3x3=9 pixels
is used (see 1603 in FIG. 16, to be described). With reference
to FIG. 19, N=3, M=(2730x2730)=7452900, and therefore
(9>1og,(7452900)/3).

The shape of the code window can be rectangular, square,
orany pattern of contiguous or non-contiguous pixels. For the
present particular implementation, the code window is a
square arrangement of 9 pixels, as seen for example in FIG.
21A, thereby affording convenient periodicity. The code win-
dow can be any shape, and does not have to be tileable.
However, having a code window that is so large that the code
window overlaps with periodic copies of itself is undesirable
as such decreases the number of effective bits in the code
window. FIGS. 21B-21D show some alternate arrangements
for code windows that may be used. Note that the code win-
dow shape does not determine the size of the ruler, which is
determined by the tile sizes. A more compact shape will result
in fewer problems with loss of points (due to occlusion for
example). The size of the code window determines the maxi-
mum size of the TBPS (which will be achieved when the
TBPS is actually a perfect map—i.e. all possible codes are
present for exactly one location in the TBPS). The larger the
window code, the less codes are used in the pattern, which
increases the robustness to errors in the capture and analysis
process.

Next, in step 403, the size of the binary tiles used to con-
struct the bit-planes is set. The tiles should have more points
than the code window, and the code window shape should
desirably not share ruler grid points with periodic copies of
itself on a period of the tile size. This feature is desirable
because the size of the window should be as small as possible
to provide a unique code for each location in the pattern—
allowing for some redundancy to provide robustness. If the
code window shares ruler grid points with periodic copies of
itself then the number of possible unique codes is reduced
relative to a code window of the same size that does not share
ruler grid points with periodic copies of itself. The size of
each tile must be such that for each dimension, the LCM of the
tile sizes is larger than the size of the 2D-ruler. This predicates
that the tiles sizes for each bit-plane are co-prime in order to
maximize the size of the pattern whilst avoiding potential
ambiguity.

The first bit-plane is selected at step 404 and the 2D ruler
pattern is initialised at step 405. A TBPS tile for the current
bit-plane is created in step 406 and used to tile the current
bit-plane of the 2D ruler in step 407. If there are more bit-
planes remaining to be generated, as tested in step 408, then
the next bit-plane is selected at step 409 and the processing
continues from step 406 as before. If there are no more bit-
planes to complete, as determined at step 408, then the 2D
ruler is saved by the processor 1805 to the memory 1806 or
1810 in step 410 and the processing terminates.

Not all of the tiles for each bit-plane need be a perfect
submap—some may be perfect maps. However, if the tiles of
two or more bit-planes are perfect maps then the areas of
those tiles would need to be the same which would limit the
size of the 2D ruler as the dimensions of the TBPS tiles could

US 9,153,029 B2

13

then not be co-prime. The maximum horizontal 2D ruler size
is achieved when the horizontal sizes of the TBPS tiles for
each bit-plane are co-prime. Similarly, the maximum vertical
2D ruler size is achieved when the vertical sizes of the TBPS
tiles for each bit-plane are co-prime. Optimum implementa-
tion occurs when the tiles are co-prime perfect submaps and
the bit-planes are sized based on the LCM of the tile dimen-
sions.

Morano described a brute force algorithm for generating
perfect submaps. This can be used to create TBPS tiles. Step
406, as described in detail in FIG. 5, uses another, iterative
approach, to create a TBPS of a required tile size, and for a
chosen code window shape As seen in FIG. 5, the tile is first
initialised in step 501 with binary random noise. The number
of window codes that occur exactly once in the tile is deter-
mined and assigned to the current uniqueness measure U,
502. The current pixel is set to a first pixel in the tile in step
503. That pixel is toggled in step 504 and the number of
window codes that occur in the now modified tile exactly once
is calculated and assigned to the modified uniqueness mea-
sure U, in step 505. If U, is not greater than the current
uniqueness measure U, as tested in step 506, then the current
pixel is toggled in step 507 to return the current pixel to its
original state, and the next pixel in the tile is selected at step
508. However, if at step 506 the modified current uniqueness
measure U, is greater than the current uniqueness measure U,
then the current uniqueness measure is made equal to the
modified uniqueness measure at step 509. Provided the num-
ber of unique window codes is less than the number of pixels
in the tile, as tested in step 510, the process 406 selects the
next pixel at step 508 and continues to step 504. However, if
at step 510 all window codes in the tile are now unique, then
the process 406 saves the TBPS tile at step 511 to the memory
1806, 1810 and the process 406 exits.

In order to permit efficient decoding of the tiles, it is desir-
able to be able to quickly look up the offsets in each tile, given
the code window. The “offset” is that unique position within
a tile at which the code window may be positioned to permit
identification of any particular pixel in the tile. Examples of
offsets are seen in FIG. 22 for a 13x13 tile 2200 which has a
local origin location 2202. Three exemplary 3x3 code win-
dows 2204, 2206 and 2208 are shown at various locations
within the tile 2200. Associated with each code window 2204,
2206 and 2208 is a corresponding offset 2210, 2212 and 2214
extending as a 2D vector from the tile origin 2202 to a corre-
sponding origin location (unlabelled for clarity) of the corre-
sponding code widow 2204, 2206 and 2208. The offsets per-
mit unique identification of a position of a code window with
the tile, and hence, via the code window, the unique identifi-
cation of a pixel value.

The procedure in FIG. 6 shows a method 600 for construct-
ing a table that can be used to efficiently access the offsets.
The method 600 is performed associated with the generation
of the TBPS, either as a precursor step of, or after, TBPS
generation, but is desirably performed before projection of
the pattern onto the target. The method 600 is desirably imple-
mented as software executable by the processor 1805 of the
computer 101. Given a TBPS and a corresponding coding
window, step 601 selects an initial pixel 601 within the TBPS.
Step 602 then forms a bit sequence from a predetermined
ordering of the pixels within the defined coding window. The
bit sequence is converted into an integer window code in step
603. This process of extraction of the window code performed
in steps 601-603 is further illustrated 1600 in FIG. 16 where
a TBPS tile 1601 is shown with the current selected pixel

20

35

40

45

55

14
indicated by a cross 1602. The defined coding window 1603
is highlighted to show the (9 pixel) points within the window
1603.
The window code W, , ,, for the pixel in the n™ bitplane at
index position (i,j) in the captured image can be represented
mathematically as

Wijn = Z izt j-somn2"- 0

where b,y souy,, 18 the bit value at the w” code-window
location which his offset from the pixel (i,j) by offsets of
Iw), J(w)) 1605.

The window code is saved by the processor 1805 in a 2D
look up table in the memory 1806/1810 with the address of
the current pixel 604. For example, a bit sequence for the
window 1603, using a right to left, top to bottom raster
sequence (illustrated by the window location indices 1604),
and commencing at the top left pixel of the window 1603,
would be 111010000, (with black pixels taking the value 0
and white pixels taking the value 1), giving an integer window
code of 464, .

Returning to FIG. 6, step 605 tests if all pixels in the TBPS
tile have been encoded and saved in the 2D look-up table. If
not, step 606 follows where the next pixel in the TBPS tile is
selected and steps 602 to 604 are repeated. When all pixels
have had their window code saved at step 605, the processor
1805 in step 607 then uses the 2D look up table to construct a
hash table to invert the look up table. The hash table may also
be saved by the processor 1805 in the memory 1806/1810.
This concludes the method 600. This hash table, when given
an input of the window code from a location in the TBPS,
returns the 2D pixel offsets in the tile. Methods for construct-
ing a minimal perfect hash function when the keys for the
hash and the results of the hash function are determined in
advance (as they are here) are well known and available in
standard software libraries.

The methods and processes of FIGS. 4 to 6 provide for the
generation of the pattern 1900. As noted above the pattern
1900 may be generated by the computer 101 executing the
method of FIGS. 4 to 6 and directly output as a displayable
image to the projector 102 for projection onto the scene or
target 104. The pattern 1900, as part of the generation, is
stored to the computer memory 1806/1810 for subsequent or
repeated use. In some implementations, the pattern 1900 may
be recorded as image data to a non-volatile non-transitory
recording medium, such as a CD-ROM or USB memory or
the other formats mentioned above, for distribution or use by
one or more projectors 102. Another non-transitory non-vola-
tile medium to which the pattern 1900 may be recorded is to
that of a slide 1899 which is generally translucent but collo-
quially may be termed a “transparent” slide. Such recording
may be performed by printing using an appropriately config-
ured printer 1815, or using photographic exposure tech-
niques. The slide 1899 may then be inserted into the projector
102 for projection of the pattern image onto the scene.

FIG. 7 illustrates the process 204 for generating a mapping
of'the captured image coordinates to the coordinate system of
the 213 ruler pattern when a single 2D ruler pattern is pro-
jected onto the scene, such as illustrated for example in FIG.
20. Given the single captured image, the process 204 first
selects in step 701 a local subregion of the image that contains
at least four full periods or tilings of the TBPS in at least one
of'the bit-planes of the ruler pattern and at least one full period
in each of the other bit-planes. The ruler code values are then

US 9,153,029 B2

15

recovered in step 702 at the each of the captured image pixels.
In the simplest form this assumes that the gain and offset in
the captured image are locally spatially invariant, meaning in
the present example that the 8 intensity levels within the local
sub-region are distinguishable regardless of their overall
intensity. A histogram analysis of the intensity values in the
local region can be used to establish the discrete intensities
corresponding to the code values. This establishes a mapping
from the intensity values to the 2D ruler code values. A
process 703 (detailed in FIG. 9) is then used to establish an
affine grid corresponding to the centres of the pixels of the
projected 2D ruler pattern within the selected local region.
The ruler codes at intersection points of the affine grid in the
captured image are then sampled in step 704. This may
involve simply sampling the nearest image point or taking a
median value within a region smaller than one cell of the
affine grid to minimise the effects of noise. The affine grid of
sampled codes will therefore correspond to an equivalent set
of'points in the 2D ruler pattern. The recovered sampled code
values are then processed in step 705 to decode and thereby
determine the 2D ruler coordinates corresponding to the
sampled affine grid points.

Since the grid points correspond to pixels in the 2D ruler
pattern, the captured image coordinates at the grid points can
be stored in an array of the same dimensions as the 2D ruler to
provide a map from 2D ruler coordinates to captured image
coordinates. If multiple local regions return different cap-
tured image coordinates for the same 2D ruler coordinate,
these can be averaged to reduce the variation due to noise. If
there are more local regions in the captured image that remain
to be processed, as tested in step 706, then the process 204
selects the next local region in step 707 and returns to step 703
for processing that selected region. When all local regions
have been processed, as determined in step 706, then the
process 204 terminates.

FIG. 8 illustrates the process 308 for generating a mapping
of'the captured image coordinates to the coordinate system of
the 2D ruler pattern when a short sequence of phase shifted
2D ruler patterns are projected onto the scene. If the scene is
effectively static and the camera and projector are fixed, then
the images in the sequence will be captured by the camera 105
and registered by storing within the computer 101. Given the
captured images, the process 308 first selects in step 801 a
local subregion in the images that is known to contain at least
four full periods of the TBPS in at least one of the bit-planes
of the ruler pattern and at least one full period in each of the
other bit-planes. The ruler code values are then recovered in
step 802 at the captured image pixels. This process assumes
that the images in the sequence are described by a spatially
variable linear mapping of the phase shifted ruler patterns
with the same linear gain and offset for each captured image
pixel position. The captured image pixel intensity values from
each image in the phase shifted sequence are analysed using
the method provided in the section entitled: Phase Shifted
Sequence Construction and Analysis, discussed below.
Analysis of the phase shifted image sequence in step 803
returns a scene image where the image intensities correspond
to the reflectivity of the surfaces in the scene and a scene
image where the image intensities correspond to the ambient
lighting of the scene. The affine grid of points corresponding
to the centres of the 2D ruler pattern pixels within the selected
local region is then determined in step 703, as mentioned
previously with reference to FIG. 9. The ruler code values are
then sampled in step 804 at the affine grid of points. This can
be done by simply using the code at the nearest captured
image position for each affine grid point or by finding the
median code value within a region smaller than one cell of the

10

15

20

25

30

35

40

45

50

55

60

65

16

affine grid to minimise the effects of noise. The gridded
sample values will correspond to an equivalent set of points in
the 2D ruler pattern. The recovered code values are then
processed at step 705 to decode and determine the 2D ruler
coordinates corresponding to the sampled grid points. Since
the grid points correspond to pixels in the 2D ruler pattern, the
captured image coordinates at the grid points can be stored in
an array of the same dimensions as the 2D ruler pattern to
provide a map from the 2D ruler coordinates to the captured
image coordinates. If multiple local regions return different
captured image coordinates for the same 2D ruler coordinate,
these can be averaged to reduce the variation due to noise. If
there are more local regions in the captured image that remain
to be processed, as tested at step 805, then the process 308
selects the next local region in step 806 and returns to process
that next local region at step 703. When all local regions have
been processed, as determined at step 805, the process 308
terminates.

The process 703 for establishing the affine grid of sample
points in the current local region at the captured image pixel
positions, as used in the processes 204 and 308, is further
detailed in FIG. 9. First in step 901, from the input set of ruler
code values of the current local region, the processor 1805
selects a bit-plane (usually the most significant bit-plane)
around the point of interest, such as the position (x,y) in FIG.
20. As noted above, the current local region should contain at
least four full periods of the TBPS tile pattern for the selected
bit-plane. The selection process of step 901 is further illus-
trated in FIG. 11 for a portion 1100 of the captured image
2000 where the selected bit-plane of the ruler code image
1101 is illustrated and the selected local region 1102 is high-
lighted around a point of interest 1104, with the TBPS tile
boundaries 1103 being shown for illustrative purposes.
Within the selected local region 1102, the process 703 then
selects a subregion in step 902. This is further detailed in FIG.
12 showing a selected subregion 1201 within the selected
local region 1102 around the point of interest 1104. Step 903
then calculates the correlation of the bit-plane of the selected
subregion 1201 with the bit-plane of the current local region
1102. In step 904, the processor 18005 operates to identify the
four strongest correlation points closest to the point of inter-
est. In FIG. 12, these correlation points are shown by crosses
1205, 1215, 1225, 1235 which are centrally located within
corresponding regions 1202, 1203, 1204, as highlighted.

Step 905 then operates to ascertain an affine transform A’
from the corners of the periodic support of the TBPS tile for
the selected bit-plane, to the positions (indicated by the
crosses 1205, 1215, 1225, 1235) of the correlation peaks,
arising from the correlation of the selected subregion 1201.
Note that the identified region 1206 defined by the selected
correlation peaks 1205, 1215, 1225, 1235, will correspond to
one period of the tiled TBPS bit-plane, but may be offset from
the periodic tile boundaries. In step 906, the processor 1805
executes to transform the TBPS tile pattern using the affine
transform A' to produce a version of the TBPS tile sampled on
the captured image coordinate of the current local region
1102. This is illustrated by a process 1300 in FIG. 13, where
the application of the affine transform 1206 to the original
TBPS tile 1301 gives a transformed tile 1303. Step 907 then
operates to cause the processor 1805 to calculate the correla-
tion of the transformed TBPS tile 1303 with the selected
bit-plane of the current local region 1102.

Step 908 then operates to identify the closest strong corre-
lation peak. The position of the identified peak and the scale
and shear parameters of the affine transform A' are used by the
processor 1805 in step 909 to construct the transform A from
the TBPS tile coordinate system to the coordinate system of

US 9,153,029 B2

17

the current local region. This process is further illustrated at
1400 in FIG. 14 which shows the selected local region 1102 of
the selected bit-plane around the point of interest 1104 and the
location of the closest strong correlation peak at 1401 with the
correlated tile 1405 identified by the locations of the correla-
tion peaks 1402, 1403, 1404 corresponding to the other cor-
ners of the TBPS tile. The process 703 then, in step 910, uses
the affine transform A to map the centres of the pixels in the
TBPS tile to the captured image coordinate system, thus
forming the affine grid of sampling positions corresponding
to the TBPS tile pixel centres. The process 703 then con-
cludes. The operation of step 910 is illustrated at 1500 in FIG.
15 where the mapped centres 1501 of the TBPS tile are shown
on the affine sampling grid 1502.

The process 705 which, as discussed above, takes the ruler
codes on the affine grid of sample points in the current local
region and returns a decoded mapping from the 2D ruler
pattern coordinates to the captured image coordinates, is fur-
ther detailed in FIG. 10. Firstly, in step 1001, the initial grid
point in the affine grid of sampled ruler codes is set by the
processor 1805. Then in step 1002 the bit-plane is set to the
first bit-plane. Step 1003 follows where the window code is
then recovered from grid points in the current bit-plane within
the defined window around the current grid point. The win-
dow code is then used in step 1004 to look up the offset in the
TBPS for the current bit-plane using the hash table con-
structed earlier in step 607. If there are more bit-planes
remaining for which the TBPS offsets must be determined for
the current grid point, as determined in step 1005, then the
process 705 proceeds to select the next bit-plane in step 1006,
and returns to step 1003 for processing the next bit-plane. If
TBPS offsets for all bit-planes for the current grid point have
been determined, as assessed at step 1005, then the process
705 proceeds to step 1007 where the processor 1805 uses
these offsets to determine a coordinate in the 2D ruler pattern.

In step 1007, the horizontal and vertical offsets can be
processed independently. An equivalent process is used for
both the horizontal and vertical offsets. If the horizontal coor-
dinate of the current point in the 213 ruler pattern is x and the
offset in the TBPS tile of the i,, bit-plane is o,, and the hori-
zontal size of the TBPS tile in the i,, bit-plane is d,, then a set
of congruences

0;=x mod d;

@
can be formed.

For n bit-planes, the above will provide n such congruences
and these congruences allow the calculation of the horizontal
coordinate x within the 2D ruler. The size of the 2D ruler will
be limited to a size over which this set of congruences has a
unique solution for all grid points in the ruler. This size X, is
equal to the least common multiple of the horizontal sizes of
the TBPS tiles, being:

X=LCM(d,, ..., d;. .., d,). 3)

If the horizontal sizes of all of the TBPS bit-planes are

co-prime, then this limit to the size of the ruler is just the
product of the horizontal TBPS tile sizes, being:

X=d;x ...xdx...xd,. 4

The calculation of the horizontal coordinate from the con-
gruences relies on the Chinese Remainder Theorem (CRT).
There are many methods for solving this set of congruences.
One method, which works for any set of tile sizes, is to
enumerate, for each congruence, all coordinates x up to X
which satisfy the congruence. When this is done for all of the
congruences there will be only one coordinate that satisfies all
congruences.

10

15

20

25

30

35

40

45

50

55

60

65

18

An equivalent process can be used to determine the vertical
coordinate of the current point in the 2D ruler from the ver-
tical offsets in the TBPS tiles for each bit-plane.

Step 1008 then follows where coordinates of the current
affine grid point in the captured image are then saved by the
processor 1805 in the mapping array formed in the memory
1806 at the 2D ruler pattern address corresponding to the set
of window codes for the current point. If there are more grid
points remaining to be decoded, as tested in step 1009, then
the process 705 proceeds to select the next grid point at step
1010, and then returns to step 1002 for processing that grid
point as before. If at step 1009, there are no more grid points
left to process, then the process 705 is completed.

Itis to be noted that the method of FIG. 6 for updating a 2D
look-up table that assist the decoding process of FIG. 10, is
not essential, nor is the specific decoding process of FIG. 10.
The table may be constructed at any point prior to decoding
providing the ruler is available, and is not required before
projection.

In an alternative implementation, the decoding may be
performed by a simple (brute-force) search, as used in prior
art approaches. In such instances, the look-up table is not
required.

The principle underlying the interaction of the tiled bit-
planes to produce a 2D ruler having a much larger period than
the periodicities of the TBPS tiles is illustrated in FIG. 17. The
figure shows a pattern of tiling boundaries for a system with
three bit-planes. The tile boundaries for the first 1701, second,
1702 and third 1703 bit-planes are illustrated. The tile bound-
aries all align at the origin point 1704 and the alignment of the
tile boundaries in a portion of the 2D ruler pattern is shown
1705.

Phase Shifted Sequence Construction and Analysis

When the 2D ruler is projected, variations in the ambient
light, the reflectivity of the surface 104 and angle of the
surface 104 to the camera 105 can cause significant variation
in the intensity of the captured patterns from one point in the
captured scene to another. This can make it difficult to ensure
that the bit-planes in the pattern are accurately recovered. To
address this, a sequential phase shifting approach, such as that
shown in FIG. 3, can be used to increase the robustness of the
system 100 to these spurious variations in captured intensity.

If there are n bit-planes in the 2D-ruler, then the ruler will
have K=2" possible integer code values (1 to K) at each point.
For a code value k, a phase value is assigned as follows:

_ k-1 ®

K

&

The phase values are quantised for each code value and are
used to construct a series of pattern images that are projected
onto the scene and captured in sequence. The pattern images
are constructed so that the intensity for a given position that
has code value k is represented in the sequence of images with
a series of Q intensity values i, in which:

Lp=a(l+sin(@+p,)) Q)

where 1), are a predetermined sequence of imposed phase
shifts, which are the same for all locations in the ¢ image of
the sequence.

The mapping from code value to the image intensity values
is illustrated in FIG. 23 where the mapping 2300 shows the
sinusoidal curves for the first 2310, second 2320 and third
2330 images in the sequence. The code values (which here
take the values 1 to 8) are mapped to points on these curves so
that for example, the code value 5 maps to the three different

US 9,153,029 B2

19

intensities 2340, 2350, 2360 for the three images in the
sequence. This is further illustrated in FIG. 24 which shows
2400 the resulting intensity patterns in each of the images in
the sequence 2420, 2430, 2440 that result from the corre-
sponding section of the code pattern 2410. The figures illus-
trate an exemplary window in the code pattern 2450 and the
corresponding window 2460, 2470, 2480 in each of the
images in the sequence. Scaling and offset (cosine) of the
sinusoidal image are a consequence of the projection and
capture process.

When the intensity of this region is captured the sequence
of intensity values is modified by spatial variations in the
reflectivity of the surface and in the ambient lighting, by the
gain and offset of the image projection and capture device,
and by noise. There may also be a non-linearity in the
response of the overall system 100, but for the present pur-
poses this is assumed to be either small, and thus able to be
ignored, or otherwise as having been corrected. The captured
intensity sequence at the position of interest will have inten-
sities

M
where it is assumed that an additive background, b, and a local
modulation factor a are invariant from one image in the
sequence to the next at the position of interest.

Eq. 6 can be expanded to give

Do=brasin(gryp)re,,

®)

The full system of equations, for all K images can be
written in vector-matrix form as:

Dpg=b+asin(@)cos(y,)+a cos(@)sin(yp,)+e .

P cos(1) sin(yy) 1 & (©)]
: : : e :
Pg | =| coslthg) sin(rg) 1|l p|+| &
: : : e :
Po cos(¥p) sin(wQ) 1 &
where
a = asin(p) (10)
B = acos($)

Provided Q=3 and the chosen phase shifts 1), result in a
non-singular, well conditioned matrix, the resulting set of
linear equations can be solved for o, f§ and b.

The set of linear equations (9) can be written more com-
pactly in vector matrix notation as

p=Ma+e (1D

where

cos(iy) sin(y;) 1
= cos(thy) sin(yy) 1],

cos(p) sin(yp) 1

10

15

20

25

30

35

40

45

50

55

20
-continued
P. 1
Po
€1
e=| &g
2o

The squared measurement error is given by

U'2=£T£

12)
= (Ma- p)" (Ma - p)
=@ M" - p")(Ma-p)

=d M Ma-p"™Ma-a"M"p+pTp

This error is minimised when

130'2_0
Er

a3

do? B A M Ma-p"Ma-a"M p+pTp) (14)

dal dal
_ 3" M Ma) ~ a(p” Ma) ~ @ MTp)
- dal dal dal

=2MTMya-2MTp

So the least squares solution for a satisfies

M Ma=MTp (15)
Since the imposed phase steps 1, are known, M is also

known. As p is just the set of measured pixel intensities at the

chosen position, this is a simple linear system of the form

Qa=q (16)

with Q=M"M and q=M”p, both of which are known. This
linear matrix equation can therefore be solved for a.

There is considerable freedom in the choice of both the
number of pattern images in the phase sequence and the set of
phase shifts 1), to be applied to each image in the sequence. A
minimum of three images is required for the system of equa-
tions to be solvable. With three images and phase shifts of 0,
2n/3, 4n/3 for example, equation (9), neglecting the noise
term, becomes

1 an

US 9,153,029 B2

21

which can be solved exactly to give

1 (18)

[FSTR]
|
|
|

Wl —
W[—
Wl —

The phase value can be recovered as

¢=a tan 2(a, B) (19)

and the integer code value is

k=1+ round(%) @9

The parameter a can be recovered from

a:\/a2+[52 1)

and will be related to the reflectivity of the surface at that point
in the scene.

The offset parameter b will provide a scene image without
the projected code where the value of b is related to the
ambient light in the scene from the current point in the image.

The phase shifting techniques described above may be
used to identify positions with substantial independence from
variations in ambient lighting, surface colour and surface
reflectance.

The process for creating a ruler pattern using Toroidal
Binary Perfect Submaps can be generalised to use a prime
radix, R, other than 2 to permit Tileable R-ary Perfect Sub-
maps (TRPSs) to make the ruler pattern. TRPS are analogous
to TBPSs but, rather than having values of 1 or 0, use values
from 0 to R-1. This permits smaller code windows to be
achieved at the cost of increasing the number of discrete
values in the pattern.

Detail of a process 201 for creating the 2D ruler pattern
using TRPSs, used in the processes 200 and 300, is illustrated
in FIG. 25. The process 201 of FIG. 25 is desirably imple-
mented as software executable by the processor 1805 of the
computer 101. First, a number of R-planes to be used for
encoding is set at step 2501 where R-planes are arrays of
integers base R. The next step 2502 involves the setting of the
size and shape of a 2D code window. The code window needs
to be large enough to code more than the number of points in
the 2D ruler pattern. If there are M points in the 2D ruler
pattern and each point takes one of K=R” possible values,
where n is the number of R-planes, then the number of pixels
in the 2D code window must be strictly greater than log(M)
=logM)m. In the specific implementations described
herein, a code window size of 5 pixels is used (as per FIG.
21B). With reference to FIG. 27, n=3, R=3, M=(1716x1716)
=2944656, and therefore (5>1log;(2944656)/3).

The shape of the code window can be rectangular, square,
orany pattern of contiguous or non-contiguous pixels. For the
present particular implementation, the code window is a cross
shaped arrangement of 5 pixels, as seen for example in FIG.
21B. Other shapes for the code window may be used. FIGS.
21B to 21D show some alternate arrangements for code win-
dows that may be used. A more compact shape will result in
fewer problems with loss of points (due to occlusion for
example). The size of the code window determines the maxi-
mum size of the TRPS (which will be achieved when the

10

15

20

25

40

45

50

22

TRPS is actually a perfect map—i.e. all possible codes are
present for exactly one location in the TRPS). The larger the
window code, the less codes are used in the pattern, which
increases the robustness to errors in the capture and analysis
process.

Next, in step 2503, the size of the R-ary tiles used to
construct the bit-planes is set. The tiles should have more
points than the code window, and the code window shape
should desirably not share ruler grid points with periodic
copies of itself on a period of the tile size. This feature is
desirable because the size of the window should be as small as
possible to provide a unique code for each location in the
pattern—allowing for some redundancy to provide robust-
ness. [fthe Ode window shares ruler grid points with periodic
copies of itself then the number of possible unique codes is
reduced relative to a code window of the same size that does
not share ruler grid points with periodic copies of itself. The
size of each tile must be such that for each dimension, the
LCM of the tile sizes is larger than the size of the 2D-ruler.
This predicates that the tiles sizes for each bit-plane are co-
prime in order to maximize the size of the pattern whilst
avoiding potential ambiguity.

The first bit-plane is selected at step 2504 and the 2D ruler
pattern is initialized at step 2505. A TRPS tile for the current
R-plane is created in step 2506 and used to tile the current
R-plane of the 2D ruler in step 2507. If there are more
R-planes remaining to be generated, as tested in step 2508,
then the next R-plane is selected at step 2509 and the process-
ing continues from step 2506 as before. If there are no more
R-planes to complete, as determined at step 2508, then the 2D
ruler is saved by the processor 1805 to the memory 1806 or
1810 in step 2510 and the processing terminates.

The R-planes are combined mathematically to form the
image in an analogous way to combining bitplanes to form an
image.

N (22)
lj=)l R

n=1

where I, ; , is the value in the n” R-plane at location (i,j) and
R is the radix of the R plane.

The construction of each TRPS is illustrated in FIG. 26
where the tile is first initialised in step 2601 with R-ary
random noise. The number of window codes that occur
exactly once in the tile is determined and assigned to the
current uniqueness measure U, 2602. The current pixel is set
to a first pixel in the tile in step 2603. That pixel is cyclicly
incremented in step 2604 (by adding 1 modulo R) and the
number of window codes that occur in the now modified tile
exactly once is calculated and assigned to the modified
uniqueness measure U, in step 2605. If U, is not greater than
the current uniqueness measure U, as tested in step 2606, then
the current pixel is cyclicly decremented (by subtracting 1
modulo R) in step 2607 to return the current pixel to its
original state, and the next pixel in the tile is selected at step
2608. However, if at step 2606 the modified current unique-
ness measure U, is greater than the current uniqueness mea-
sure U_ then the current uniqueness measure is made equal to
the modified uniqueness measure at step 2609. Provided the
number of unique window codes is less than the number of
pixels in the tile, as tested in step 2610, the process 2506
selects the next pixel at step 2608 and continues to step 2604.
However, if at step 2610 all window codes in the tile are now

US 9,153,029 B2

23

unique, then the process 2506 saves the TBPS tile at step 2611
to the memory 1806, 1810 and the process 2506 exits.

The basic features of the exemplary pattern 2700 of FIG. 27
are now described. The pattern 2700 is formed by a conflu-
ence of R-plane patterns, each R-plane pattern being formed
by a 2D tiling of a corresponding perfect submap pattern
2708. In the example of FIG. 27 there are three 3-planes each
formed from a corresponding differently sized perfect sub-
map pattern 2702, 2704 and 2706. The submaps 2702, 2704
and 2706 in this example are co-prime, where the submap
2702 has a size of 1 1x11 pixels, the submap 2704 has a size of
12x12 pixels and the submap 2706 has a size of 13x13 pixels.
An LCM tiling of the co-prime submaps give an overall
dimension of the pattern 1900 of (11x12x13)x(11x12x
13)=1716x1716 pixels. The three bit-planes 2702-2706 com-
bine to give 27 greyscale image intensities available for pixels
in the pattern 2700, as depicted in the exemplary portion 2710
in FIG. 27. The effect of using the perfect submaps in this
fashion is that, for a small group of pixels (in this case a 5 pixel
cross shaped block as per FIG. 21B), there are no repetitions
in the pattern and thus each pixel location in the pattern may
be uniquely resolved.

Considering the pattern 2700 more generally, each R-plane
is formed of a non-overlapping periodic repetition of a R-ary
block (i.e. atiling of the R-ary block), such that for each of the
dimensions of the tiled R-ary blocks, the least common mul-
tiple of each of the sizes of the tiled R-ary blocks in that
dimension is greater than the size of the pattern in the same
dimension and such that any R-ary sub-block of a predeter-
mined size less than the tiled binary blocks occurs only on a
regular grid with the same periodicity as the tiled R-ary block
for that R-plane. This permits the tilings to be performed
using sizes that are not co-prime, provided the overall pattern
is sized to preclude ambiguity. Once formed, the pattern may
itself be tiled, and ambiguities arising from such implemen-
tations are generally be readily resolvable due to the signifi-
cant displacement of unique locations in each tile.

Processing of the captured TRPS based pattern follows in
the same way as for TBPS based patterns, except that the
captured image is divided into R-planes (planes of radix R),
rather than bitplanes (planes of radix 2).

A local histogram analysis can be used to identify the local
quantized intensity levels in the captured image. This allows
the code value C in a local region to be extracted. For a pattern
with n R-planes the code values will be integer values from 0
to R”-1. The code values for the R-planes are extracted as the
successive remainders upon division by R of the partial code
for the R-planes.

#,=C, =R*mt(C,/R). 23)

where int returns the integer part of its argument and the
partial code C,=C and the partial code for successive r-planes
is

C,po =int(C,/R). (24)

The window code W, ; , for the pixel in the n” r-plane at index
position (i, j) in the captured image can be represented math-
ematically as

Wijn = Z Cimton, j—smn R"- 25
w

where C,_z,.y ;s 18 the value at the w” code-window
location (taking a value from O to R—1) which is offset from
the pixel (i,j) by offsets of (I(w),J(w)) 1605 as seen in FIG. 16.

25

30

40

45

50

55

60

24
INDUSTRIAL APPLICABILITY

The arrangements described are applicable to the computer
and data processing industries and particularly for the imag-
ing of three dimensional objects. This can permit or at least
assist 3D graphical computerized representation of objects,
amongst other uses.

The foregoing describes only some embodiments of the
present invention, and modifications and/or changes can be
made thereto without departing from the scope and spirit of
the invention, the embodiments being illustrative and not
restrictive.

In the context of this specification, the word “comprising-
”means “including principally but not necessarily solely” or
“having” or “including”, and not “consisting only of”. Varia-
tions of the word “comprising”, such as “comprise” and
“comprises”have correspondingly varied meanings.

The invention claimed is:

1. A computer-implemented method of determining a two-
dimensional position of a location captured in an image, said
method comprising:

forming a two-dimensional greyscale pattern, said two-

dimensional pattern comprising a plurality of R-planes,
wherein each said R-plane comprises a tiling of a corre-
sponding R-ary block, being a block of radix R integer
values, such that for each dimension of the pattern, the
least common multiple of each of the sizes of said cor-
responding tiled R-ary blocks in that dimension is
greater than the size of the pattern in the same dimen-
sion, and such that any R-ary sub-block of a predeter-
mined size less than the tiled R-ary blocks occurs only
on a regular grid with the same periodicity as the tiled
R-ary block for that R-plane;

imparting the two-dimensional pattern onto a scene;

capturing an image of the scene including the projected

two-dimensional pattern;

determining from the captured image a sub-block associ-

ated with the location and constructing, from a R-ary
representation of the sub-block, a unique integer value
for each R-plane, being a representation of the pattern in
the R-plane of the sub-block associated with the loca-
tion; and

using said unique integer values from each R-plane to

determine the location in the image.

2. A method according to claim 1 wherein the radix of the
R-planes is 2, by which the method forms bit-planes and
binary blocks.

3. A method according to claim 1, wherein at least one tiled
R-ary block comprises a perfect map.

4. A method according to claim 1, wherein each said tiled
R-ary block is a perfect submap.

5. A method according to claim 1, wherein the forming of
the two-dimensional pattern comprises:

generating a plurality of perfect R-ary submaps such that a

least common multiple of the sizes of the submaps is
larger than a desired size of the pattern;

tiling each of the submaps to form a corresponding plural-

ity of R-ary patterns each having a size of the least
common multiple; and

combining the patterns as R-planes to form the greyscale

pattern.

6. A method according to claim 5, wherein the generating
comprises:

setting a number of R-planes;

setting a size and shape of'a 2D code window;

setting co-prime sizes for tiles in each R-plane;

initializing the 2D greyscale pattern; and

US 9,153,029 B2

25

for each R-plane:

generating a tileable R-ary perfect submap (TRPS) tile
for the R-plane; and

tiling the R-plane with the generated TRPS tile.

7. A method according to claim 2, wherein the forming of

the two-dimensional pattern comprises:

generating a plurality of perfect binary submaps such that
a least common multiple of the sizes of the submaps is
larger than a desired size of the pattern;

5

tiling each of the submaps to form a corresponding plural- 10

ity of binary patterns each having a size of the least

common multiple; and

combining the patterns as bit-planes to form the greyscale
pattern.

8. A method according to claim 7 wherein the submaps

comprise toroidal binary perfect submaps.

9. A method according to claim 1, comprising:

forming an image that is a sinusoidal function of a phase
formed from the greyscale pattern;

phase shifting the said image to create a plurality of phase
shifted images;

projecting the plurality of phase shifted images in sequence
onto the surface;

using phase shifting techniques to recover a phase from a
corresponding sequence of captured images indepen-
dent of variations of at least one of ambient lighting,
surface colour and surface reflectance.

10. A method according to claim 9 wherein scaled and

offset cosine of the phase shifted images are projected.

11. A method according to claim 1, wherein the imparting
of' the pattern onto the scene comprises projecting the pattern
onto the scene.

12. A method according to claim 1, wherein the scene is
one of a two-dimensional scene or a three-dimensional scene.

13. A system for mapping surface shape at a location on a
three-dimensional (3D) shape; said system comprising:

(a) a projection arrangement by which a two-dimensional
(2D) greyscale pattern in projected a surface of the 3D
shape, the greyscale pattern comprising a plurality of
R-planes, wherein each said R-plane comprises a tiling
of'a corresponding R-ary block, being a block of radix R
integer values, such that for each dimension of the pat-
tern, the least common multiple of each of the sizes of
said corresponding tiled R-ary blocks in that dimension
is greater than the size of the pattern in the same dimen-
sion, and such that any R-ary sub-block of a predeter-
mined size less than the tiled R-ary blocks occurs only
on a regular grid with the same periodicity as the tiled
R-ary block for that R-plane;

(b) an imaging device configured to capture an image of the
3D shape with the greyscale pattern projected there-
upon;

(c) an image processing arrangement configured to process
the captured image to:

(1) separate the captured image into each of the plurality
of bit-planes;

(ii) process a most significant one of the bit-planes to
determine a local affine mapping within the captured
image;

(iii) processing the local affine mapping using the Chi-
nese Remainder Theorem to recover the location; and

(iv) mapping the recovered location to a unique position
in the 2D greyscale pattern and utilizing projection
geometry between the projection arrangement and the

15

20

25

30

35

40

45

50

55

60

26

imaging device to recover surface shape information
thereby mapping surface shape of the 3D surface at
the location.

14. A non-transitory computer readable storage medium
having a computer program recorded thereon, the program
being executable by computer apparatus to determine a two-
dimensional position of a location captured in an image, said
program comprising:

code for forming a two-dimensional greyscale pattern, said

two-dimensional pattern comprising a plurality of
R-planes, wherein each said R-plane comprises a tiling
of a corresponding R-ary block, being a block of radix R
integer values, such that for each dimension of the pat-
tern, the least common multiple of each of the sizes of
said corresponding tiled R-ary blocks in that dimension
is greater than the size of the pattern in the same dimen-
sion, and such that any R-ary sub-block of a predeter-
mined size less than the tiled R-ary blocks occurs only
on a regular grid with the same periodicity as the tiled
R-ary block for that R-plane;

code for projecting the two-dimensional pattern onto a

three-dimensional scene;

code for capturing an image of the scene including the

projected two-dimensional pattern;

code for determining from the captured image a sub-block

associated with the location and constructing, from a
R-ary representation of the sub-block, a unique integer
value for each R-plane, being a representation of the
pattern in the R-plane of the sub-block associated with
the location; and

code for using the said unique integer values from each

R-plane to determine the location in the image.

15. A computer-implemented method for determining a
two-dimensional position of a location captured in an image,
said method comprising:

forming a two-dimensional pattern, said two-dimensional

pattern comprising a plurality of bit-planes, wherein
each said bit-plane comprises a tiling of a corresponding
binary block, such that for each dimension of the two-
dimensional pattern, the least common multiple of each
of the sizes of said corresponding tiled binary blocks in
that dimension is greater than the size of the two-dimen-
sional pattern in the same dimension, and such that any
binary sub-block of a predetermined size less than the
tiled binary blocks occurs only on a regular grid with the
same periodicity as the tiled binary block for that bit-
plane;

projecting the two-dimensional pattern onto a three-di-

mensional scene;

capturing an image of the scene including the projected

two-dimensional pattern;

determining from the captured image a sub-block associ-

ated with the location;

constructing, from a binary representation of the sub-

block, a unique integer value for each bit-plane, being a
representation of the projected two-dimensional pattern
in the bit-plane of the sub-block associated with the
location; and

using said unique integer values from each bit-plane to

determine the location in the image.

#* #* #* #* #*

